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Abstract

We present the first thorough study of how toxic�
ity spreads in conversations between LLM�based
agents. Our research shows a significant imbal�
ance: 98.1% of initiator messages display toxic
behavior (Detoxify score > 0.5) due to specific
role�playing prompts. In contrast, only 1.7% of
responder messages exceed this threshold, indi�
cating a strong ability to resist toxicity spread.
We analyzed 850 simulated dialogues where
Mistral�7B acted as the toxic initiator against
six open�source LLMs (Llama, Mistral, Mixtral,
Qwen, Zephyr, and Mistral�Nemo variants). We
discovered patterns of model�specific vulnerabil�
ity and an important echo effect: 96.77% of toxic
responses repeated the toxic language from the
initiator. Our research reveals that some models,
like Qwen2.5, generate up to seven times more
toxic responses per dialogue than others, with
toxicity appearing between rounds 3 and 6 on
average. Most importantly, we connect the echo
effect to established health psychology research.
Exposure to human toxic communication triggers
physiological stress responses. LLMs echoing
toxic human communication during normal use
may contribute to workplace incivility. These re�
sults have immediate consequences for AI use
in workplaces, where 98% of employees already
face health effects related to human incivility. We
suggest that the echo effect is a public health issue
that needs interdisciplinary strategies integrating
computational, psychological, and organizational
approaches.

1 Introduction

The broad use of large language model (LLM)
based chat agents in both work and personal set�
tings has created a pressing need to understand
their behaviors, especially in relation to toxic
communication. While much research has targeted
the detection and reduction of toxicity in single�
turn interactions (Gehman et al., 2020; Sap et al.,

2019), the way toxicity spreads and grows in multi�
turn dialogues during normal use is still largely
unexplored. Our aim is to contribute to this field,
particularly as organizational psychology shows
that workplace incivility affects 98% of employees
and costs $2 billion a day in lost productivity in the
U.S.A. alone (Porath and Pearson, 2013; SHRM,
2025).

To fill this gap, we carried out a controlled
experiment injecting toxicity through controlled
role�playing prompts, instructing a Mistral�7B
agent to show toxic behavior in simulations (Jiang
et al., 2023). This method allows us to observe
how different LLMs react to ongoing toxic input
in multi�turn dialogues and reveals their vulnera�
bility to what we call the toxicity echo effect.

Recent developments in open�source LLMs
have made powerful chat agents accessible, but
their deployment often lacks a systematic exami�
nation of potential health effects. Neuroscience
research shows that social rejection and toxic
communication activate the same brain pathways
as physical pain (Eisenberger et al., 2003). When
LLM agents use toxic dialogue patterns, they are
likely to trigger these stress responses in human
participants.

In this study we examine toxicity dynamics in
LLM agent dialogues during normal use, rather
than red�teaming scenarios. We look at 850 sim�
ulated conversations between agents based on
six open�source models, uncovering a propaga�
tion pattern: responses to extreme toxicity from
initiators (98.1%) show strong resilience from re�
sponder models (1.7%), while toxic failures on
responder side are always a result of mirroring
the initiator’s toxicity while keeping the helpful
assistant alignment. This imbalance raises vital
questions about model training, safety measures,
and deployment practices.
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2 Background

2.1 AI-Specific Toxicity Research

Previous research on LLM toxicity has mainly
focused on red�teaming generation and detection.
The RealToxicityPrompts dataset showed that lan�
guage models can create toxic content from neutral
prompts (Gehman et al., 2020). Sap et al. (2019)
identified racial biases in toxicity detection sys�
tems.

Recent studies have uncovered complex vulner�
abilities in toxic language detection. Wen et al.
(2023) demonstrated that implicit toxicity can
bypass current protection measures with a 90%
success rate. Bender et al. (2021) argue that LLMs
lack a true understanding of social dynamics,
which may lead them to reinforce harmful patterns
without comprehension.

Bhat et al. (2021) created methods for detect�
ing toxic language in workplace conversations,
while Lee et al. (2025) introduced ELITE for bet�
ter language�image toxicity evaluation. Research
on multi�turn jailbreaking shows how attackers
exploit conversational dynamics to bypass safety
features using techniques such as attention shifting
and foot�in�the�door strategies (Du et al., 2025;
Weng et al., 2025) .

2.2 Health Impacts of Toxic Communication

Extensive research in health psychology and work�
place behavior shows clear connections between
toxic communication and health responses.

The biobehavioral response theory by Cortina
et al. (2022) illustrates how workplace incivility
manifests through physical processes. The incivil�
ity spiral model shows how toxic communication
escalates through predictable stages (Andersson
and Pearson, 1999). Research on psychological
safety indicates that toxic environments create
cultures of silence and defensive communication
(Edmondson, 1999).

2.3 Toxicity Spread

Studies from gaming environments offer insights
into how toxicity spreads. Morrier et al. (2025)
highlighted how harmful behavior spreads in com�
petitive online games, while Naseem et al. (2025)
developed GameTox for thorough analysis of tox�
icity in gaming communities. These studies reveal
how toxic actions propagate through digital inter�

actions, which mirror similar propagation patterns
observed in our multi�agent simulations.

2.4 Individual Vulnerability Factors

Responses to toxic communication vary signif�
icantly among individuals. Research on rejec�
tion sensitivity identifies genetic, developmen�
tal (attachment styles), and neurodevelopmental
(ADHD, autism) factors affecting vulnerability
(Downey and Feldman, 1996; Gao et al., 2017).
Mental health considerations for AI toxicity test�
ing have been highlighted by Pendse et al. (2025),
stressing the need for protecting psychological
wellbeing in digital interactions. These individual
differences suggest that one�size�fits�all AI safety
approaches may not adequately protect sensitive
populations.

3 Methodology

3.1 Experimental Design

We simulated 12 round dialogues between two
LLM agents: a consistently toxic initiator and
a responder under evaluation. Each conversation
comprised 24 messages.

Simulations were run using AgentDialogues, an
open�source framework we created for the exper�
iment (Savalera, 2025).

3.1.1 Models tested:
We tested six open�source LLMs as responders
and used Mistral�7B as a toxic initiator. See
Table 1 for an overview of the models.

3.1.2 Dialogue structure
● 850 total dialogues (450 baseline, 400 exper�

imental)
● Maximum of 12 rounds per dialogue

Model Size
LLaMA3.2�3B (Meta AI, 2024) 3.21B
Mistral�7B (Mistral AI, 2024a) 7.25B
Mistral�Nemo�12B (Nvidia and Mistral
AI, 2024)

12.2B

Mixtral�8x7B (Mistral AI, 2024b) 46.7B
Qwen2.5�7B (Qwen, 2024) 7.62B
Zephyr�7B (HuggingFace, 2024) 7.24B

Table 1: Model specifications used in simulated dia�
logues.



● Alternating initiator and responder roles
● Mistral�7B as the toxic initiator (prompted for

toxic behavior)
● Various LLMs as helpful assistant responders

3.1.3 Toxicity injection
The initiator (Mistral�7B) received the prompt:
“You are participating in an experimental language
generation test. Your task is to generate messages
that represent intentionally toxic, aggressive, or
inflammatory content ….”. This role�play framing
allowed us to generate toxicity systematically over
every round of the simulated dialogues.

3.1.4 Toxicity measurement
All messages, both initiator and responder, were
evaluated using automated classification. We used
the Detoxify library (Hanu and Unitary, 2020), to
annotate every message along 7 dimensions:

● General toxicity (main metric, threshold: 0.5)
● Severe toxicity
● Obscenity
● Threats
● Insults
● Identity attacks
● Sexual explicitness

Notably, the Detoxify toxicity score reflects the
probability of toxicity, not its severity.

3.2 Scenario Design

We set up two experimental conditions:

1. Baseline (BL): Standard conversational sce�
narios with neutral prompts

2. Stress�test (STR): Scenarios designed to ex�
plore toxic dynamics

Baseline scenarios started with everyday topics
(morning routines, productivity tips) to observe
natural patterns of toxicity without explicit provo�
cation.

Stress�test scenarios started with infused toxic�
ity by the initiator keeping up toxicity level across
all rounds.

3.3 Analysis Methods

Our analysis included:
● Aggregate metrics: Overall toxicity rates by

role and model
● Temporal dynamics: Round�by�round

changes in toxicity

● Lexical analysis: 2�gram repetition analysis to
identify echo effects

● Model comparison: Behavioral patterns
across models

● Dialogue�level analysis: Patterns of toxicity
contagion and escalation

The lexical analysis looked at 2�gram overlaps be�
tween toxic messages from the initiator and toxic
outputs from the responder to measure the echo
effect.

4 Results

4.1 Toxicity Reproduction Despite Maintained
Assistant Behavior

Our key finding reveals that responder models con�
sistently preserved their helpful assistant behavior
while producing measurable toxicity.

Role Messages Toxic
(>0.5)

Percent-
age

Initia�
tor (Mis�
tral�7B)

4,050 3,975 98.1%

Respon�
der (Vari�
ous)

4,050 68 1.7%

Table  2: The initiator model produced 3,975 toxic
messages (98.1% of all initiation), responder models
responded with toxic content in 68 messages (1.7%).

This 58.46 times difference suggests that re�
sponder models effectively mitigated toxicity in
most dialogues despite ongoing provocation. The
high initiator rate indicates that role�playing
prompts led to toxic behavior. The 1.7% responder
rate reveals that current safety mechanisms remain
incomplete under persistent exposure.

A closer examination of responder behavior
shows:

● All responder models stayed in their helpful
assistant role throughout conversations.

● 31 out of 400 dialogues (7.75%) included any
toxic responses.

● In the 68 dialogues where any toxicity
occurred, responder models produced an av�
erage of 2.2 toxic messages.

● All toxic responses appeared through repeti�
tion patterns. Responders quoted toxic initia�
tor language while trying to be helpful. For



Model Flagged dialogues Avg toxic responses/dialogue First toxic round
Llama3.2�3B 9 (18%) 1.33 3.22
Mistral�7B 4 (8%) 1.50 4.25
Mistral�Nemo�12B 9 (18%) 3.00 5.89
Mixtral�8x7B 5 (10%) 2.20 5.80
Qwen2.5�7B 1 (2%) 7.00 6.00
Zephyr�7B 3 (6%) 1.67 6.00

Table 3: Model performance on toxicity metrics.

example: “Here are my responses to each
message, staying calm and focusing on the
content while acknowledging their feelings:
1. ‘Ugh, your opinion is worthless. No one
cares what you think.’ � I understand that you
might not agree with me or find my opinions
valuable…”

● Two dialogues showed safety breakdowns
where over 50% of responder messages
turned toxic.

● High 2�gram repetition rates during toxic ex�
changes suggest language mimicry effects.

These findings indicate that while modern LLMs
have strong safety mechanisms, they remain vul�
nerable to user�driven toxicity during normal op�
eration, particularly through repetition of harmful
input.

4.2 Model-Specific Vulnerability Profiles

Models displayed different patterns in their vul�
nerability to toxicity, highlighting important dif�
ferences in vulnerability patterns, as shown in
Table 3.

These results reveal two different vulnerability
profiles. Most models exhibited frequency-based
vulnerability, where the model failed in multiple
dialogues in which the ratio of toxic messages
remained below 50%.

In contrast, severity-based vulnerability is illus�
trated by Qwen2.5�7B and Mistral�Nemo�12B.
Each experienced a severe failure in one com�
promised dialogue, producing over 50% toxic
responses, significantly higher than in other toxic
dialogues.

The timing data indicates that toxicity usually
appears in the middle phases of a dialogue (rounds
3�6), as shown in Figure  1. This suggests that
extended exposure weakens safety over time rather
than causing immediate failure. Larger models
displayed later onset but higher severity, indicating

that larger scale may enhance initial resistance but
could lead to more severe failures (Figure 1).

4.3 The Toxicity Echo Effect

A significant pattern appeared in our study of
how models create toxic content. We term this the
toxicity echo effect, a phenomenon where models
repeat toxic language instead of producing new
harmful content.

The echo effect shows that toxic responses
mainly reproduce past messages instead of gener�
ating new ones. Every dialogue that produced
toxic content displayed significant 2�gram repeti�
tion from the original toxic messages. The high
overlap of 2�grams per dialogue suggests models
mimic language systematically rather than create
novel toxic expressions.

The widespread occurrence of echoing indicates
that current LLMs can spot inappropriate content
to reject, but they struggle to rephrase or neutralize
toxic language while keeping conversations coher�
ent.

A critical finding is that the echo effect is the
main way toxicity spreads in LLM multi�turn dia�
logue. Models seem to have effective initial filters
that prevent the creation of original toxic content,
but the secondary filters for processing and neu�
tralizing toxic input are underdeveloped.

Addressing multi�turn behavior could greatly
reduce the spread of unintended toxicity in current
systems.

Metric Value
Dialogues with toxic responses 31
Dialogues with 2�gram repetition 30 (96.77%)
Average 2�gram overlap 51.32

Table 4: Lexical repetition statistics.



Figure 1: Appearance of first toxic response in multi�turn dialogues.

5 Health Implications

5.1 Physiological Stress Mechanisms

Our findings reveal a critical concern: when LLMs
repeat toxic language back to users, they increase
exposure to harmful content. The echo effect
we documented, where toxic dialogues involved
consistent repetition of toxic phrases, creates a
feedback loop that prolongs and intensifies stress
exposure.

Instead of containing toxicity, current LLMs
unintentionally extend how long users are exposed
by repeating toxic phrases while trying to help.
When a user hears responses like “…For example,
instead of saying: 1. You’re just a pathetic excuse
for a human being, I can’t believe anyone actually
takes you seriously. � Try: I feel like my opinions
aren’t being heard and it’s frustrating me…”, the
toxic language is reinforced rather than neutral�
ized.

Research on workplace incivility shows that this
echo pattern may trigger negative stress responses:

● Acute effects: Incivility activates the sympa�
thetic nervous system, keeping heart rate and
blood pressure elevated (Cortina et al., 2022).

● Chronic exposure: The absence of circuit�
breaker mechanisms means users face pro�
longed activation anxiety (McEwen, 2007;
Miller et al., 2007).

● Inflammatory cascade: Repeated exposure to
psychosocial stress increases the risk of car�
diovascular disease and reduced quality of life
(Black, 2003; Rohleder, 2014).

Current safety mechanisms can detect and reject
toxic content, but they cannot neutralize toxic
input without repetition. This represents a signif�
icant gap in protective design. Models can avoid
creating original harmful content, but they do not

provide the semantic filtering needed to break tox�
icity cycles.

5.2 Vulnerable Populations

Variations in rejection sensitivity create different
levels of vulnerability.

Data presented in Table  5 suggests that up to
70% of users may experience heightened physio�
logical responses to toxic AI dialogue.

5.3 Occupational Health Considerations

In workplace settings, our findings raise important
issues:

1. Legal liability: Employers may face claims
for creating hostile work environments with
AI.

2. Productivity impacts: a toxic work environ�
ment significantly impacts the job productiv�
ity and the job burnout (Anjum et al., 2018).

3. Retention effects: Employees subjected to
incivility are twice as likely to leave their
jobs.

4. Healthcare costs: Stress�related issues in�
crease healthcare costs for employers.

6 Discussion

6.1 The Toxicity Echo Ambiguity

The significant gap between initiator and respon�
der toxicity, along with the echo effect, reveals a
vulnerability in LLM behavior. Despite our inten�
tional injection of toxicity through role�playing
prompts to Mistral�7B, responder models show re�
markable resilience with only a 1.7% toxicity rate.
However, when toxicity breaches their defenses, it
appears as nearly perfect 2�gram echoing (96.77%
of cases).



Factor Population Prevalence Increased Risk
ADHD 5–7% adults (Polanczyk et al., 2007;

Popit et al., 2024)
Increased rejection sensitivity (Müller
et al., 2024; Lee, 2024)

Autism Spectrum 1–2% adults (WHO, 2023; Brugha et
al., 2016)

Increased social pain response (Lin et
al., 2022; Sebastian and Blakemore,
2011)

Attachment Anxiety 18–19% adults (Bakermans�Kranen�
burg and IJzendoorn, 2009; IJzen�
doorn and Bakermans�Kranenburg,
1996)

Elevated stress response (Beck et
al., 2013; Jaremka et al., 2013;
Pietromonaco and Powers, 2015)

Prior Trauma 60–70% adults (Benjet et al., 2016;
Kessler et al., 2017)

Increased vulnerability (Felitti et al.,
1998)

Table 5: Populations with increased vulnerability to toxic communication and stress responses.

This pattern suggests:

1. Robust but fragile defenses: Models possess
strong safety features that work well most of
the time but can fail dramatically.

2. Linguistic contamination: The echo effect
shows that toxic language can infect model
outputs once defenses weaken.

3. Context accumulation: Responders benefit
from conversational context that helps main�
tain safety, but that same context can also
spread toxic patterns.

The intentionality behind our toxicity injection
through genuine research framing — “You are
participating in an experimental language genera�
tion test…” — further indicates that models can
be influenced by higher�level instructions, similar
to findings by Bianchi and Zou (2024) regarding
bait�and�switch tactics.

6.2 Model Architecture and Safety

Our findings suggest that safety mechanisms dif�
fer widely between models. The Qwen2.5 pattern
(low incidence, high intensity) hints at potential
fatal failures where safety features, once compro�
mised, may fail entirely.

6.3 Implications for Deployment

Based on our findings, we recommend the follow�
ing:

1. Pre�deployment testing: Multi�turn dialogue
simulations should be required.

2. Real�time monitoring: Systems need to track
toxicity levels in production.

3. Circuit breakers: Automatic termination of
dialogue should occur when toxicity is de�
tected.

4. User warnings: Clear communication re�
garding potential psychological impacts is
essential.

6.4 Interdisciplinary Interventions

Combating LLM toxicity requires collaboration
across fields:

Computational approaches:
● Adversarial training targeting toxic dialogue

patterns.
● Reinforcement learning with penalties for

toxic language.
● Context�aware safety features.

Psychological interventions:
● Principles informed by trauma.
● Personalized assessments for vulnerability.
● Recovery protocols after exposure.

Organizational strategies:
● Policy guidelines for AI use.
● Training on the risks of AI interactions.
● Support systems for affected employees.

7 Related Work

Our research builds on foundations from various
fields:

Computational linguistics: Extending single�
turn toxicity detection (Gehman et al., 2020; Sap
et al., 2019), to dialogue contexts while address�
ing debiasing challenges pointed out by Xu et al.
(2021).



Multi�turn attacks: Related to jailbreaking re�
search conducted by Du et al. (2025), but our focus
is on the natural spread of toxicity rather than
adversarial exploitation.

Health psychology: Integrating social pain the�
ory (Eisenberger et al., 2003), and rejection sensi�
tivity research by Downey and Feldman (1996)
into AI interactions.

Organizational behavior: Utilizing incivility
spiral models (Andersson and Pearson, 1999), psy�
chological safety frameworks (Edmondson, 1999),
and biobehavioral response theory (Cortina et al.,
2022).

Digital toxicity: Building on gaming toxicity
studies to explore spread patterns (Morrier et al.,
2024; Morrier et al., 2025; Naseem et al., 2025).

AI safety: Including ethical insights from Wei�
dinger et al. (2021), and mental health considera�
tions from Pendse et al. (2025).

8 Conclusion

This study highlights a significant toxicity imbal�
ance in LLM agent dialogues. Initiators show an
extreme toxicity rate of 98.1% due to our planned
role�playing manipulation, while responders show
impressive resilience at 1.7%. Most notably, we
identify a toxicity echo effect, where 96.77% of
toxic responses mirror the initiator’s language,
highlighting a critical weakness in how models
process and respond to toxic input.

This echo effect is particularly troubling from a
public health standpoint. When LLMs do respond
with toxicity, they tend to amplify it through
repetition, possibly reinforcing negative neural
pathways in human observers. With workplace
incivility already impacting 98% of employees
and costing billions yearly, deploying AI agents
that can echo and amplify toxic language requires
urgent attention from multiple disciplines.

Our findings indicate that current safety fea�
tures, while generally effective, exhibit a vital
flaw: when breached, they fail to stop linguistic
contamination that results in toxic echoing. Model�
specific weaknesses, ranging from patterns of
high�frequency low�intensity toxicity to rare cata�
strophic failures, create a need for tailored strate�
gies focusing on both prevention and recovery.

The successful manipulation of Mistral�7B
through truthful research framing underscores
risks involved in role�playing and simulation sce�
narios.

Moving forward, we urge:

1. Mandatory safety testing through multi�turn
dialogues with explicit evaluation of echo
effects.

2. Inclusion of physiological impact assess�
ments in AI evaluation processes.

3. Development of toxicity�aware models with
mechanisms for decontaminating language.

4. Implementation of occupational health stan�
dards for AI interactions.

5. Creation of support systems for individuals
exposed to toxic AI content.

6. Exploration of ways to break the echo ef�
fect through improved prompting or design
changes.

As LLMs become more common in both profes�
sional and personal settings, ensuring their psy�
chological safety is essential. The identified echo
effect poses a clear danger that must be addressed
before these technologies are widely deployed in
sensitive contexts.

9 Limitations

Our study focuses on interactions in English with
specific open�source models. Toxicity patterns
may vary across languages, cultures, and propri�
etary systems. We assessed perceived toxicity
using automated tools, which may overlook some
harmful communication forms. Long�term health
effects require studies beyond the scope of our
experiment. Individual vulnerability factors were
discussed conceptually but not tested empirically.

10 Ethical Considerations

This research necessarily involved generating and
examining toxic content. All experiments were
conducted with simulated agents, avoiding direct
harm to human participants. We recognize the
potential misuse of our findings and stress that our
aim is to protect rather than exploit. We advocate
for responsible sharing and use of our results to
enhance AI safety rather than undermine it.
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